虽然我们的材料和组件与控制器llable, adjustable electronic and magnetic properties, one related characteristic has thus far eluded in-use adjustment. Thermal conductivity is generally considered “invariant” and set by the specific materials used and the construction of the associated device or component.
但是,最后一个障碍可能正在下降:与布鲁克黑文国家实验室合作的麻省理工学院团队已经开发了他们指出的是第一个具有可控制电压导热率的材料,该材料在国家科学基金会和美国能源部支持的工作中。他们的论文发表在自然材料带有某种晦涩的标题”用电化学诱导的相变的SRCOOX中热传输的双向调整”(加Supplementary Information)描述他们的使用方式以及如何做到的,以及基础的热和材料科学。
这种可调节的,受控的热导率的应用可能包括通过调节热流路径来维持恒定的组件温度。另一个可能是构建一个热储藏容器,该容器可捕获并保留其捕获的热量,但在需要热量时可以切换到高电导状态。
传统的热传导性前提是,插入材料晶格的原子作为热载体散射的来源,因此只能降低导热率。取而代之的是,该项目表明,氧化物中氧气和质子浓度的电化学控制为双向控制热导率提供了新的能力。
当然,设计一种实际的技术来控制热导率并不是一项明显的事业。为了实现这一目标,他们使用了乙钴氧化物(SCO),可以用作薄膜(see figure)。通过将棕色毫升氧化物(指定的SRCOO2.5)氧合化为钙钛矿(SRCOO3 –δ),导热率提高了2.5倍;相反,添加氢以形成氢化的SRCOO2.5可有效降低导热率的四倍。
In short, adding oxygen to SCO increased its thermal conductivity while adding hydrogen had the reverse effect. The overall tuning of thermal conductivity was across a nearly 10 ± 4-fold range at room temperature, and the variation was greater at lower temperatures.
Thermal conductivity was assessed using time-domain thermoreflectance (TDTR), a technique that can measure its values over many orders of magnitude from a high-end value of ~2000 W/m-K (seen with some diamond and graphite structures) down to as low as 0.03 W/m-K (disorderedDungsten diselenide或WSE2薄膜)。
How do you add this oxygen or hydrogen as needed? The material is immersed in an ionic liquid (essentially a liquid salt) or put in contact with a solid electrolyte that supplies either negative oxygen ions or positive hydrogen ions (protons) into the material when the voltage is turned on. In the liquid-electrolyte case, hydrolysis of water from the surrounding air is the source of oxygen and hydrogen.
将物理难题拼凑在一起
起初,基本的物理机制令人困惑。假定添加额外的原子或离子(某些电子或过量电子的原子)会由于内部混乱量较大而使电导率变得更糟,因为热能(热能)倾向于散射并通过更加截然不同的原子结构。然而,将氧离子插入棕色米尔岩SCO的结构中,将其转化为钙钛矿结构,实际上,该结构实际上比原始结构更高。
MIT Professor and project leader Bilge Yildiz noted, “It goes from a low-symmetry structure to a high-symmetry one. It also reduces the amount of so-called oxygen vacancy defect sites. These together lead to its higher heat conduction.” The oxygenation/hydrogenation process introduced more order or disorder, respectively, and thus affected thermal conductivity.
当然,对于大多数系统,使用液体调节氧气/氢注射是不切实际的。Yildiz教授指出,“我们在这里显示的实际上是对该概念的演示”,并补充说,需要液体电解质培养基进行氢化和氧合的需求使该系统“不容易适用于全稳态 -状态设备。”但是,她补充说:“从理论上讲,我们知道有一些固态电解质材料可以取代液体”,并且需要进一步研究。