ED兴趣葡萄糖电池眼糖果

糖还不错:燃料电池补丁收获身体的葡萄糖

June 14, 2022
研究人员将超薄的陶瓷底物和葡萄糖溶液组合在一起,以创建灵活的高容量生物相容性电池。

您将学到什么:

  • 如何将独特的陶瓷基材和葡萄糖组合在一起,以创建灵活的生物相容性电池。
  • 用于单单元和“音量”测试的复杂固定装置。
  • 多个设备之间的典型和峰值结果。

力量ing devices within the body presents a dilemma: A discrete battery can provide the power but presents size and safety challenges, while an RF-based approach has both power and depth limitations. At the same time, we know that too much sugar can be bad for your health, but it’s also an essential and available nutrient in the body.

Now, researchers at MIT, the Swiss Federal Institute of Technology (EPFL – Lausanne), and Eidgenössische Technische Hochschule (ETH – Zurich) have designed a new type of fuel cell that converts in-body glucose directly into electricity. The cells are just 400 nm thick and generate about 43 µW per square centimeter, which the researchers maintain is the highest power density of any glucose fuel cell to date under ambient conditions. They can withstand temperatures up to 600°C, well beyond the level needed remain stable through the high-temperature sterilization process required for all implantable devices.

新设备的核心是一种陶瓷基础,即使在高温和微型缩放下,也可以保留其电化学性能。尽管我们通常认为陶瓷是脆性的,但在这种厚度下,电池可以作为超薄膜或涂层制造,然后包裹在植入物周围,以使用人体丰富的葡萄糖供应来消极电力电子产品。

分层设计

该设计由三层组成:顶部阳极,中间电解质和底部阴极。阳极在体液中与葡萄糖反应,将糖转化为葡萄糖酸。这种电化学转化释放了一对质子和一对电子。

The middle electrolyte acts to separate the protons from the electrons, conducting the protons through the fuel cell, where they combine with air to form molecules of water—a harmless byproduct that flows away with the body’s fluid. Meanwhile, the isolated electrons flow to an external circuit, where they can be used to power an electronic device(图。1)

1.葡萄糖燃料电池,芯片和单个设备的示意图:(a)基于多孔PT阳极/CEO的独立膜的陶瓷葡萄糖燃料电池的示意图2electrolyte/dense Pt cathode. (b) Optical photograph of fuel-cell chip containing 30 individual glucose-fuel-cell devices. (c) Optical microscopy image of an individual freestanding ceria membrane.

研究人员使用了由陶瓷制成的电解质,这是一种具有高离子电导率的陶瓷材料,在机械上是稳健的,在氢燃料电池中被广泛用作电解质。此外,它是生物相容性的,这是目标应用的必要性。该团队用铂金制成的阳极和阴极将电解质夹住,铂金是一种稳定的材料,很容易与葡萄糖反应。

他们在芯片上制造了150个单独的葡萄糖燃料电池,每个葡萄糖燃料电池薄,宽约400 nm,宽约300 µm。他们将细胞对硅晶片的图案进行了图案,表明这些设备可以与常见的半导体材料和过程配对。

In other glucose-based designs, the electrolyte layer is often made from polymers. However, polymer properties, including their ability to conduct protons, will easily degrade at high temperatures. Moreover, they’re difficult to retain when scaled down to the dimension of nanometers and are hard to sterilize.

测试评估,验证性能

Basic testing began with a single-station station arrangement(图2)。They found many cells produced a peak voltage of about 80 mV. Given the tiny size of each cell, this output is the highest power density of any existing glucose fuel-cell design.


2。The full measurement setup includes a custom-designed fuel-cell flow case and liquid/gas handling systems.

他们通过评估150个设备的开路电压性能和12个设备的功率密度来实现成功制造和电化学功能的高度统计验证。当研究人员将葡萄糖溶液流过一个定制测试站,并带有弹簧触点(图3和4)


3. Performance and comparison of ceramic glucose fuel cells: (a,b) Histograms of the open-circuit potentials of 120 ceramic glucose fuel cells with dense ceria electrolyte (a) and 30 ceramic glucose fuel cells with porous ceria electrolyte (b). (c) Test setup allowing for rapid screening of 30 individual glucose fuel-cell devices through spring-loaded needles and plug board. (d) Polarization curve of a ceramic glucose fuel cell, exhibiting a peak power density of 43 µW/cm2。(e) Comparison of previously reported polymer-electrolyte-based glucose fuel cellswith those in this work, i.e., ceramic-electrolyte glucose fuel cells: power density as a function of fuel-cell thickness. The ceramic glucose fuel cells show 3X higher miniaturization and higher power densities than existing abiotic glucose fuel cells.


4.(a)打开的测试设置的照片,可以通过弹簧的针和插头板快速筛选30个单独的葡萄糖燃料电池设备。(b)放大弹簧针的照片,用于可重复接触葡萄糖燃料电池设备。

Their data-acquisition system recorded basic performance and other factors over time(图5)


5.(a)在超过10个小时的时间内,燃油电压电压和电流密度的原始时间曲线的示例。(b)电压和功率密度随着记录性能葡萄糖燃料电池的时间的函数。如报道,数据对应于表现最佳的葡萄糖燃料电池。

由于该项目是在麻省理工学院完成的,因此测试并非仅以基本电压,电流和电源参数结尾。例如,他们使用拉曼散射,X射线衍射和扫描电子显微镜(SEM)来分析陶瓷基本材料以保持一致性和结构。他们还使用电化学阻抗光谱法评估了耐力和其他因素,并通过光学显微镜和SEM进行了葡萄糖燃料细胞膜设备的验尸分析。

“Instead of using a battery, which can take up 90% of an implant’s volume, you could make a device with a thin film, and you’d have a power source with no volumetric footprint,” said Jennifer L.M. Rupp, thesis supervisor for team leader and PhD candidate Philipp Simons, who developed the design as part of his PhD thesis in MIT’s Department of Materials Science and Engineering (DMSE). “Excitingly, we are able to draw power and current that’s sufficient to power implantable devices,” added Simons.

冗长的纸张涵盖了包括设备制作细节在内的作品“可植入电子产品的陶瓷 - 电解质葡萄糖燃料电池“ 出版于Advanced Materials,并通过稍短的时间来增强”支持信息” posting.

最新的

Murata — IRA IRA-S210ST01 Pyroelectric Infrared Sensor

2022年3月31日
日本村田公司的IRA-S210ST01铅热释电我nfrared sensor which provides a good signal-to-noise ratio and reliable performance.. In smart light…

Nexperia - PMEGXXXTX TRENCH SHOTTKY RECTIFISER

2022年3月31日
Nexperia扩展了其沟槽肖特基整流器的投资组合,其设备额定最高为100 V和20 A.新零件具有出色的Switchi…

工程领域的女性 - 鼓舞我们领域的创造性增长

2022年3月8日
Over the last few years, the number of women in the technology or engineering profession has risen. The number of women enrolled in post-secondary en…

The Future of Automotive Wheel Sensing with GMR

Feb. 23, 2022
下载PDF版本。Allegro微型系统。磁性传感器广泛用于现代车辆,以测量运动部件的位置,…
Baidu